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Abstract. We study the scattering of an electron of a 2DEG through a large point contact separating
a region where the electrons are free and a region where the Rashba spin-orbit coupling is present. The
scattering depends dramatically on the electron incidence angle showing double refraction within the
Rashba region. For incidence not normal to the interface the electron spin state is not conserved. The
calculated conductance exhibits an oscillating behavior as a function of spin state of the incident electrons
with different spin down and spin up currents. Our model describes both a ferromagnetic semimetallic
source and a simple metallic injection electrode. In the first case the electrons are injected in a pure spin
state and in the second one they are unpolarized, that is in a statistical mixture of spin up and down
states. In both the cases the passage through the large point contact produces spin polarized currents.

PACS. 85.75.Hh Spin polarized field effect transistors – 72.25.-b Spin polarized transport –
73.23.Ad Ballistic transport

1 Introduction

One of the problems in the field of spintronic is to build
a source of spin-polarized electrons [1,2]. Several devices
based on the Rashba [3] effect have been proposed in the
last decade. They start from the pioneering work of Datta
and Das [4] that proposed an electronic equivalent of an
electro-optical modulator. The idea is to consider a two
dimensional electron gas (2DEG) with a spin-orbit cou-
pling (Rashba effect) due to an electrical field perpendic-
ular to the plane in which the electrons are contained. In
this confined system the electronic spin behaves like the
polarization of the light in a biaxial crystal.

The Datta and Das ideas have inspired some investi-
gations on spintronic devices that exhibit spin-valves ef-
fects [5,6]. In particular, the transport through a single
interface ferromagnet-2DEG was considered claiming for
an oscillatory spin-filtering due to a spin-dependent con-
ductance [7]. However there are same intrinsic obstacles
to use this technique due mainly to the conductivity mis-
match between metals and semiconductors [8]. Some de-
vices that achieve spin filtering without using ferromag-
nets have been proposed. We mention among the others a
mesoscopic Stern-Gerlach interferometric device based on
non dispersive phases (Aharonov-Bohm and Rashba) [9]
and a pair of quantum wires tunnel-coupled under Rashba
spin-orbit interaction [10]. The attempt to avoid ferro-
magnets is the main aim of our study. We show that
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a spin-dependent conductance can be achieved by using
large point contact and spin-unpolarized electrons. In or-
der to support our claim, we present a detailed study of
the scattering that an electron in a 2DEG undergoes when
it passes from a region without the spin-orbit coupling
(“no Rashba” NR zone) to a region in which the spin-
orbit coupling is present (“Rashba” R zone). We start on
considering the electron in a pure spin state fixed by the
magnetization of a semimetallic ferromagnetic lead, then
we apply our results to the case of unpolarized electrons
injected by a metallic lead, that is in a statistical mix-
ture of spin up and spin down. We focus our attention
on the scattering with an incidence angle not orthogonal
to the interface since it is expected to give spin depen-
dent contributions to the conductance of a large point
contact. Two different spin-polarized output channels ap-
pear. The behaviour of electron spin in such scattering can
be compared with the polarization of the light in a biaxial
crystal: the incident ray splits, within the crystal, in two
rays (ordinary and extraordinary) whose polarizations are
orthogonal. The electron motion within the hybrid sys-
tem is assumed to be ballistic and the conductance of a
wide Point Contact separating the NR and the R zones
can be calculated by summing up the transmission coeffi-
cients obtained varying the allowed incidence angles from
0 (normal incidence) to limit angles at which the two out-
put spin channels are completely reflected. We show that
the conductance is made by different spin up and spin
down contributions and depends on the spin state of the
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incoming electrons. The injection of electrons in the
Rashba zone through the Point Contact is a way to spin-
polarize the 2DEG electrons because the output spin up
current is different from the spin down current.

The paper is organized in the following way. In the
second section we resume the properties of a 2DEG with
Rashba coupling everywhere in the plane. In the third
one we analyze the scattering on the interface between
the NR and the R zone. In the last section we present
the calculation of the Point Contact conductance. Short
conclusions end the paper. In the appendices we report the
linear system of the wave amplitudes as stems out from the
boundary conditions at the interface. In the last appendix
we briefly classify the Rashba Hamiltonian symmetry.

2 2DEG with Rashba spin-orbit coupling
everywhere

In this section we recall the characteristics of a 2DEG
with a spin-orbit Rashba coupling occupying the whole
x− z plane [11]. An electrical field E ŷ (ŷ is the unit vec-
tor in y direction) acts on the electrons in the plane and we
assume that the electronic transport within the plane can
be considered as ballistic. The velocities of the charge car-
riers are of the order 108 cm/s or larger and a magnetic
field parallel to the plane appears in the rest reference
frame of the charges. This kind of spin-orbit is known as
Rashba effect. The Hamiltonian of the 2DEG is

H0 =
p2

2mS
+HSO (1)

where HSO is the spin-orbit term

HSO =
η

�
ŷ · (�σ × �p) . (2)

We represent the spin �s = �σ/2 with the Pauli matrices �σ

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
and η ∝ E . The spin-orbit term in the Hamiltonian results
in the spin splitting of free electron band (see Fig. 1). In-
deed, as it has been demonstrated by Lommer et al. [12]
for quasi two dimensional semiconducting quantum wells,
such splitting appears even in the absence of magnetic
field, due to the quantization in the confinement potential.
For the InGaAs/InAlAs heterostructure the spin-orbit pa-
rameter η was estimated to be ∼3.9 × 10−12 eVm [13].
Since H commutes with �p we can classify the eigenvec-
tors of H0 with the wavenumbers kx and kz. The electron
eigenstates corresponding to the splitted energy levels E±
are the spinors

ψ+ = exp [i (kxx+ kzz)]

(
cos θ

sin θ

)

ψ− = exp [i (kxx+ kzz)]

(− sin θ

cos θ

)
(3)

Fig. 1. Free electron spin splitted bands by spin-orbit Rashba
effect. The two circles of radii k+ and k− represent constant
energy contours. The spinor parts of the wave functions are
indicated.

whose eigenvalues are

E± =
�

2

2mS

(
k2

x + k2
z

)± η
√
k2

x + k2
z . (4)

Here

θ = arctan

[
kx

kz
−
√
k2

x

k2
z

+ 1

]
. (5)

If k′ =
√
k2

z + k2
z is the modulus of the momentum, and

φ = arctan
kz

kx

its direction in the plane, then

θ = −φ
2

(6)

and

E± =
�

2

2mS

(
k′ 2 ± 2k0k

′) (k0 = mSη/�
2). (7)

One can see that the spin degeneracy on the Fermi sur-
face is lifted but the Rashba term is not able to produce
a spontaneous spin polarization of the electron states. For
given energy there are two different values of k′ with any
spin projection. The meaning of equation (6) is: when we
choose the direction of electron motion fixing its kx and kz ,
then we assign automatically the electron spin polariza-
tion state. If �k′ is directed along x then φ = 0 and ψ+, ψ−
describe the pure “spin up” and “spin down” states in z di-
rection, that we fix as the spin quantization direction. We
note that the account for the spin-orbit interaction in the
Hamiltonian (1) reduces the rank of the direct space group
twice [14]: space rotation of 4π is needed to get the same
spinor.

Let us denote the complex conjugation operator as K̂0:

K̂0f = f∗.
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The time reversal operator [15] for the special case of a
particle of spin 1

2 takes the form

K̂ = −iσyK̂0

and

K̂

(
f1

f2

)
=

(−f∗
2

f∗
1

)
. (8)

It commutes [15] with HSO. Applying K̂ to the degenerate
eigenstates ψ+, ψ− we see that one is the time reversed of
the other

K̂ψ+ = −ψ∗
− , K̂ψ− = ψ∗

+ (9)

while their spinor parts s+ and s−

s+ =

(
cosφ/2

− sinφ/2

)
, s− =

(
sinφ/2

cosφ/2

)

are one orthogonal to the other.
Finally we stress that the spin-orbit interaction can be

attributed to a magnetic field parallel to the plane and
orthogonal to the wave vector �k′. This magnetic field cou-
ples with the spin magnetic moment and it orientates the
spin along the direction orthogonal to �k′ [3]. The spin
component in this direction is

σ⊥ = − sinφ · σx + cosφ · σz =

(
cosφ − sinφ

− sinφ − cosφ

)

and s+ and s− are eigenstates of σ⊥

σ⊥s+ = s+ ; σ⊥s− = −s−.

3 Scattering at an interface
with a seminfinite Rashba 2DEG

We assume that on the x−z plane the Rashba coupling is
restricted to x > 0 region and an electron with a momen-
tum �k ≡ (k cos γ, k sinγ) and an energy E = �

2k2/2mF

is incoming in the pure spin state |δ〉 from the NR zone
(where the electron mass is mF ). The pure spin state we
use is

|δ〉 = cos δ |↑〉 + sin δ |↓〉
where the ket |↑〉 indicates the spin up state with sz =
1/2 and |↓〉 is the spin down state with sz = −1/2. The
incident wave function is

ψi = exp (ik (x cos γ + z sin γ)) |δ〉
while the reflected wave function is

ψr = exp (ik (−x cos γ + z sin γ)) (r↑ |↑〉 + r↓ |↓〉) .
We have in the output, within the R zone (x > 0), a super-
position of the two states of the spin splitted bandsE± (k′)

E± (k′) = �
2
(
k′2 ± 2k0k

′) /2mS

Fig. 2. The vectors �k+, �k−, �k in k−space and the angles α, β
and γ that they form with x direction normal to the interface.
The two circles are the lines at the constant energy �

2k2/2mF .

degenerate with the same energy E. The energy conserva-
tion fixes two values for the modulus of the wave vector k′,
and from

E± (k′) ≡ E = �
2k2/2mF ,

we get

k′ =
√
µk2 + k2

0 ∓ k0 = k± (µ = mS/mF ).

The directions of �k+ and �k− are fixed by the conservation
of the momentum parallel to the interface

k+,x = k−,x = kx.

Now the angle φ for the mode + takes a value α different
from its value β for the mode −. The angle α of �k+, the
angle β of �k− and γ of �k with the x axis are linked up by
the relationship

k+ sinα = k− sinβ = k sinγ.

The transmitted wave function at x > 0 is the super-
position of the transmitted ones in both the modes (+)
and (−)

ψt = t+ exp (ik+ (x cosα+ z sinα))

(
cosα/2

− sinα/2

)

+ t− exp (ik− (x cosβ + z sinβ))

(
sinβ/2

cosβ/2

)
. (10)

Figure 2 shows the output angles α and β. The two modes
have the same energy E along the two circles. The con-
servation of kz gives α and β as functions of the inci-
dence angle γ. Only when the incidence is normal, with
γ = 0, the outgoing wave functions (+) and (−) go in
the same direction with α = β = 0 and with the two dif-
ferent wave vectors k+ and k−. In the other cases they
go along two different directions. We are facing with a
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Fig. 3. The limit angles γ0 of + mode (dashed line) and γ1

of − mode (full line), for three different values of mass ratio µ,
as functions of k/k0. For γ above γ1 the total reflection occurs.

phenomenon analogous to the double refraction that ap-
pears in biaxial crystals [16] with two outgoing divergent
rays. The birefringence arises when the characteristics of
electromagnetic propagation depend on the directions of
propagation and polarization of the light wave. In our case
the spin of the electron wave functions behaves like the po-
larization of the light. We notice that the spin orientations
of the outgoing waves (+) and (−) are fixed by the output
angles α and β according to the equation (6). The crossing
of the interface changes the spin state. The electron exits
in the R zone in a superposition of the two spin states(

cosα/2

− sinα/2

)
and

(
sinβ/2

cosβ/2

)
.

The output angles α and β are functions of k, γ, k0 and µ
and they do not depend on the incident spin orientation
angle δ.

The mode (+) has the limit angle

γ0 = arcsin
k+

k
(11)

and, for γ > γ0, this mode is totally reflected and it van-
ishes exponentially for x > 0. Here and in the following
we take 0 < µ < 1: we assume that the effective mass
in the R zone is less than the effective mass in the injec-
tion electrode in NR zone. When k/k0 < 2/ (1 − µ), the
mode (−) is always transmitted up to grazing incidence
at γ = π/2. Increasing the kinetic energy with respect to
spin-orbit coupling when k/k0 > 2/ (1 − µ), a second limit
angle appears

γ1 = arcsin
k−
k
> γ0 (12)

and for γ > γ1 we have the total reflection (both the modes
vanish for x > 0). When the strength of spin-orbit cou-
pling goes to zero, γ0 and γ1 tend to the common limit
arcsin

√
µ: lighter is the effective mass within the 2DEG

nearer to the normal are the propagation directions α < γ0

and β < γ1 allowed into R zone. Figure 3 shows the limit
angles as a function of k/k0. We note that when γ > γ0

then
sinα =

k

k+
sin γ > 1

and α becomes complex

α =
π

2
− iα′.

The correct determination for its imaginary part −α′ is
obtained when α′ > 0 because

sinα = coshα′ ; cosα = i sinhα′.

The mode (+) becomes a vanishing wave decaying
along x axis while it is a propagating wave along
z direction

exp (−k+x sinhα′) exp (ik+z coshα′)

×
(

cos (π/4 − iα′/2)

− sin (π/4 − iα′/2)

)
.

When γ > γ1, β = π/2 − iβ′ and both the modes are
damped within the 2DEG: the incident wave is totally
reflected.

To calculate the transmitted amplitudes t+ and t− in
the (+) and (−) modes we introduce the hybrid system
Hamiltonian

H = �p
1

2m (x)
�p+

η (x)
�

(σzpx − σxpz)

− iσz
1
2
∂η (x)
∂x

+ Uδ (x) . (13)

We assume that the mass and the strength of spin-orbit
coupling are piecewise constant

1/m (x) = ϑ (−x) /mF + ϑ (x) /mS

η (x) = ηϑ (x) , (14)

where ϑ (x) is the step function. The third term is needed
to get an hermitian H operator and the fourth term regu-
lates the transparency of the interface. The spinor eigen-
state ψ of H is continuous while its derivative has a dis-
continuity fixed by the strength u − iσzk0 of the Dirac
delta in x = 0

ψ (0+) = ψ (0−)

∂ψ (0+)
∂x

− µ
∂ψ (0−)
∂x

= (u− ik0σz)ψ (0) . (15)

This matching conditions give a four times four linear
system for the amplitudes t+, t−, r↑ and r↓ that is reported
in the Appendix A.

The normal incidence case deserves a special
care [17,18]. When γ = 0 then α = β = 0, the mode (+) is
in the spin up state |↑〉 while the mode (−) is in spin down
state |↓〉. In this case σz is a motion constant and a spin
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up |↑〉 state goes entirely in (+)mode being zero the ampli-
tude transmitted in (−) mode. A spin down state |↓〉 goes
entirely in (−) mode with zero amplitude in (+) mode.
When γ = 0 with an incoming spin state |δ〉 we have

t+ =
2µk cos δ

k+ + k0 + iu+ µk
, t− =

2µk sin δ
k− − k0 + iu+ µk

but k+ + k0 = k− − k0 =
√
µk2 + k2

0 so that t+ = t− and
the transmitted spinor is

ψt (0−) =
2µk√

µk2 + k2
0 + iu+ µk

|δ〉 .

We stress that the passage of the interface do not
change the spin. When x > 0 the spinor becomes
exp (ik+x) cos δ |↑〉+ exp (ik−x) sin δ |↓〉 and the propaga-
tion along a distance L into the Rashba region gives the
phase difference on which is based the Datta and Das de-
vice. The inefficiency of the scattering at normal incidence
to modify the spin state stems out from the identity

k+ + k0 = k− − k0

that comes from the following property of the
Hamiltonian (13): changing the sign of k0, the two
modes (+) and (−) are interchanged one with the other.
The symmetry of the Hamiltonian H is classified in the
Appendix B. When γ �= 0 the amplitudes t+, t−, r↑ and r↓
depend on k, γ, k0,µ and on δ too, that is on the incoming
spin state.

The square moduli of the transmitted ampli-
tudes |t± (δ)|2 are shown in Figure 4 when γ is between 0
and π/2. We see in Figure 4a that |t+ (0)|2 and |t− (π/2)|2
start from the same value for γ = 0 but become differ-
ent when the incidence angle increases towards π/2. In
Figure 4b we report the same behavior for a different
pair of orthogonal spins δ = π/4, 3π/4. The derivatives
of |t± (δ)|2 jump in γ0 and then in γ1 when the charac-
ter of the modes propagation changes. The cusps sign the
limit angles.

In order to calculate the transmission coefficient T we
need the probability current density

�j = R
{
ψ†�pψ

}
; x < 0

�j = R
{
ψ† (�p+ �k0 · ŷ × �σ)ψ

}
; x > 0 (16)

whose x−components are

jxl = �k cos γ
(
1 − |r↑|2 − |r↓|2

)
/mF for x < 0

jxr = jx+ + jx− for x > 0 with

jx+ = � (k+ + k0) cosα · |t+|2 /mS

jx− = � (k− − k0) cosβ · |t−|2 /mS. (17)

The boundary conditions (15) assure the continuity of the
flux jx as can be verified by a straightforward calculation
from the equations (17)

jxl = jx+ + jx− = jxr.

Fig. 4. The squared moduli of the transmitted amplitudes for
two couples of orthogonal spin polarizations. The cusps sign the
passage through the limit angles. a) The amplitudes t+ (0) and
t− (π/2) refer to electrons injected in the R zone by a ferromag-
net with a magnetization parallel or antiparallel to the z axis
respectively. b) The amplitudes t+ (3π/4) and t− (π/4) refer
to electrons injected in the R zone by a ferromagnet with a
magnetization orthogonal to the interface, that is antiparallel
or parallel to the x axis respectively.

When γ < γ0 both the modes propagate in R zone. When
γ0 < γ < γ1 only the (−) mode remains. The transmission
coefficient is the ratio of jxr with the incident flux ji =
�k cos γ/mF ,

T =
jxr

ji
,

while the reflection coefficient is R = (ji − jxr) /ji:

T+ (δ, γ) = (k+ + k0) cosα · |t+|2 ϑ (γ0 − γ) /µk cos γ

T− (δ, γ) = (k− − k0) cosβ · |t−|2 ϑ (γ1 − γ) /µk cos γ

T (δ, γ) = T+ (δ, γ) + T− (δ, γ)

R (δ, γ) = |r↑|2 + |r↓|2 . (18)

When γ overcomes γ1 , T (δ, γ) = 0 and R (δ, γ) = 1. The
flux is conserved because in all the cases

T (δ, γ) +R (δ, γ) = 1.
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Fig. 5. The two steps of the transmission coefficient T , at
k/k0 = 10, for different values of the incoming electron’s spin δ.
The second step tends to disappear for δ = 3π/4 and has the
same height of the first one when δ = π/4.

Fig. 6. The two steps of the transmission coefficient T , at
k/k0 = 100, for different values of the incoming electron’s
spin δ. In the limit k/k0 → ∞, T = 1 for 0 < γ < π/2.

The transmission coefficient as a function of γ has a first
higher step up to γ0 followed by a lower step that ends
in γ1. Figure 5 shows how the shape and the height of the
two steps vary with the spin polarization angle δ. At low
values of µ, when the electrons in 2DEG are lighter, the
propagation in the x > 0 region is allowed at angles nearer
to the normal. At equal masses (µ = 1) the passage is
allowed up to grazing incidence and the steps appear more
squared. We note that the second step tends to disappear
around δ = 3π/4 and has the maximum height around
δ = π/4. Figure 6 refers to the case of an higher Fermi
wave vector k. Obviously when k/k0 → ∞, T = 1 for γ
from 0 to π/2 but the second step is again present for k
greater then k0 of two magnitude orders.

The transmission of the interface can be analyzed not
only in terms of the (+) and (−) modes, but also separat-
ing the output probability current in a spin up and a spin
down part. The spin up T↑ (δ) and the spin down T↓ (δ)

transmission coefficients are

T↑ (δ, x) =
1

µk cos γ

{
|t+|2 cos2

α

2
(k+ cosα+ k0)

+ |t−|2 sin2 β

2
(k− cosβ + k0) + |t+| |t−| cos

α

2
sin

β

2

× (k+ cosα+ k− cosβ + 2k0) cos [(k+ cosα− k− cosβ) x

+τ+ − τ−]
}

(19)

T↓ (δ, x) =
1

µk cos γ

{
|t+|2 sin2 α

2
(k+ cosα− k0)

+ |t−|2 cos2
β

2
(k− cosβ − k0) − |t+| |t−| sin α2 cos

β

2

(k+ cosα+ k− cosβ − 2k0) cos [(k+ cosα− k− cosβ)x

+τ+ − τ−]
}
. (20)

Here t+ = |t+| exp (iτ+) , t− = |t−| exp (iτ−). Now the
precession spin motion gives a spatial modulation of the
transmission coefficients T↑, T↓, while the transmission
in (+) and (−) modes, T+ and T−, are independent on x.
Obviously the oscillations in T↑ and T↓ are opposite in
phase and

T↑ + T↓ = T+ + T− = T.

Figure 7a shows the oscillations of T↑ and T↓ when the
incidence angle is below the first limit angle γ0 and the
spin in entrance is down. Figure 7b shows what happens
when the incidence angle is above γ0. Near to the inter-
face the contribution of the evanescent waves of mode +
appears and far from x = 0 we have T↑ + T↓ = T− and
all the transmission coefficients are independent on x. The
incoming spin is up and far from the interface the trans-
mitted spin is mostly down: at a distance large enough,
the interface is able to turn down the spin.

We note that an incidence out of the normal, with
γ �= 0, has been recently discussed for small incidence
angles [17,18]. Here we have presented a full analysis
at any incidence angle focusing the attention on the
birefringence.

The previous analysis applies when the incoming wave
function is in the pure spin state |δ〉. Now we take into ac-
count the scattering when the incoming electronic spin is
in the unpolarized statistical mixture. When the electron
is unpolarized, its state is not completely known and we
represent it with the density operator [19]

ρU =
1
2
|↑〉 〈↑| + 1

2
|↓〉 〈↓| (21)

while the density operator of the completely known pure
state is

ρP = |δ〉 〈δ| .
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Fig. 7. The transmission coefficients T↑, T↓ for k/k0 = 10,
µ = 0.1 and u = 1. Figures a and b refer, respectively, to
incidence angles γ less than and greater than the first limit
angle γ0.

The mean value of an operator A for the statistical mix-
ture ρU (ρP ) is given by 〈A〉U =Tr ρUA (〈A〉p =Tr ρPA).
We get for the spin components

〈σx〉P = sin 2δ , 〈σy〉P = 0 , 〈σz〉P = cos 2δ; 0 ≤ δ ≤ π

in the pure state case and

〈σx〉U = 〈σy〉U = 〈σz〉U = 0

for the unpolarized statistical mixture: in this case the
mean values of all the spin components of the incident
wave function are null. This corresponds to have the
injection in the Rashba 2DEG using a simple metal-
lic contact without ferromagnets. The density current
probabilities for the incoming spin states |↑〉 and |↓〉
sum up in a classical way without quantum interference
with equal weights 1/2 and 1/2: all we need are the
four transmission coefficients of the equations (19, 20)
T↑ (0) , T↑

(
π
2

)
, T↓ (0) , T↓

(
π
2

)
. We indicate (0) as (↑)

and
(

π
2

)
as (↓) in such a way that the indexes refer to out-

going spins while the incoming spins are shown between
the parentheses. We have compared the overall transmis-
sion coefficient in spin up state (T↑ (↑) + T↑ (↓)) /2 with
the overall transmission coefficient in spin down state
(T↓ (↑) + T↓ (↓)) /2. Figure 8a shows the transmission of

Fig. 8. The transmission coefficients (T↑ (↑) + T↑ (↓)) /2 and
(T↓ (↑) + T↓ (↓)) /2 for an unpolarized incident wave (k/k0 =
10, µ = 0.1, u = 1). Figure a is relative to an almost normal
incidence, Figure b refers to γ a little below γ0.

the unpolarized state in up and down spin channels when
the incidence is near to the normal, while Figure 8b shows
the transmission coefficients at a larger incidence angle γ,
a little below the first limit angle. In the first case the in-
terface is not able to discriminate the spins, in the second
one it introduces a polarization. The oblique scattering,
due to the presence of the birefringence, gives in output a
spin up probability current different from spin down prob-
ability current.

4 Conductance of a point contact

The foregoing analysis can be applied to describe a point
contact device with a semimetallic ferromagnetic source
(injecting polarized electrons) or a simply metallic source
(injecting unpolarized electrons).

Let a constriction of widthW separates the two regions
that are connected with two perfect reservoirs at the Fermi
energy

EF =
�

2k2

mF
= E± =

�
2

2mS

(
k′ 2 ± 2k0k

′) .
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Fig. 9. a) The sketch of the point contact. b) The Fermi cir-
cle in k-space. The thick arch indicates the states that carry
current into the point contact.

The electron motion within the hybrid system is assumed
as ballistic, that is, the electronic mean free path is
much longer than the width W of the point contact.
The Landauer-Büttiker formalism applies [20,21]. The
conductance G at zero temperature is given by

G =
e2

h

∑
i

Ti, (22)

where Ti are the transmission coefficients for all the open
channels i between the two reservoirs at the energy EF . In
our case the index i represents the incidence angle γ.

A sketch of the point contact is shown in Figure 9a.
The 2D Fermi surface in k-space appears in Figure 9b
and only the states on its edge can carry current at zero
temperature. As we have shown before, the current is
carried through the point contact by the states belong-
ing to the arch from −γ1 to γ1 on the Fermi surface.
Quantum mechanically, the current through the point
contact is equipartitioned among the 1D subbands, or
transverse modes, in the constriction. The gap along kz

axis between two consecutive subbands can be estimated
of the order of π/W (this is exactly the result for a
square well lateral confining potential of width W ). The

Fig. 10. The conductance for polarized electrons G as a func-
tion of the spin polarization δ of the incoming electrons. The
value δ = 0 corresponds to spin up and δ = π/2 to spin down.

number of states contained in the element of arch dγ is
then kdγ/ (π/W ) . The equation (22) implies that hybrid
system conductance G (with a ferromagnetic source in
which the majority carriers are electrons in |δ〉 spin state)
is

G =
e2

h

∫ γ1

−γ1

T (δ, γ)
kWdγ

π
=
e2kW

h
G (δ) (23)

with

G (δ) =
1
π

∫ γ1

−γ1

T (δ, γ)dγ. (24)

An exhaustive discussion about this approach can be
found in references [21,22]. We note that the restriction
around the normal incidence γ = 0 gives

G0 =
T (δ, 0)
π

dγ,

i.e. the Sharvin resistance formula [23] used by
Grundler [7]. We have seen that T at γ = 0 is independent
on δ and G0 is independent on the spin polarization.

Figure 10 shows G (δ) for δ between 0 and π. The
symmetry relation T (π − δ,−γ) = T (δ, γ) given in
Appendix B gives G (π − δ) = G (δ) . The conductance of
a single interface when the incoming spin is up (δ = 0, π)
G (↑) is different from the conductance when the incoming
spin is down (δ = π/2) G (↓). This effect is a direct
consequence of the double refraction at the interface that
changes the spin state when the electron comes into the
R zone. Using the values of parameters of Figure 10 we
get for the spin polarization of the conductance

G (↓) − G (↑)
G (↓) + G (↑) = 0.068.

The results for the transmission of an unpolarized
beam can be used to discuss the case of a simply metallic
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Fig. 11. The conductances for unpolarized electrons
(G↑ (↑) + G↑ (↓)) /2 and (G↓ (↑) + G↓ (↓)) /2 as functions of kx.
The oscillation period is equal to the precession length π/k0.

source. It is interesting to notice that the integration
upon the angles of incidence does not cancel the effect
of partial polarization that the scattering introduces on
an unpolarized beam. The conductances for spin up and
spin down in the unpolarized case (G↑ (↑) + G↑ (↓)) /2
and (G↓ (↑) + G↓ (↓)) /2 are shown in Figure 11. For the
unpolarized case, with the same parameters of Figure 10,
we get, at x = 0

(G↑ (↑) + G↑ (↓)) − (G↓ (↑) + G↓ (↓))
(G↑ (↑) + G↑ (↓)) + (G↓ (↑) + G↓ (↓)) = 0.0362.

For unpolarized electrons the spin polarization of the con-
ductance reduces at half of the value for polarized elec-
trons. If we consider the output in spin up channel or in
spin down channel, the scattering at a single interface gives
rise to a partial polarization. A second interface, acting as
an analyzer of the spin, is needed to let the effect be exper-
imentally detectable. We note that it would be worthwhile
investigating the effects of a second interface on the spin
polarization. We expect that in this case Fabry-Perot os-
cillations superimpose to those shown in Figure 10 [17,24].
However the study of this problem is currently in progress.

We note that the key ingredient in order to achieve
a different transmission of spin up and spin down is the
oblique incidence of the electron combined with the strict
relation between the propagation direction and spin state
(see Eq. (6)). This is in contrast with the case of normal
incidence which has been usually considered, but it is in
agreement with the results reported for confined struc-
tures [25]. Indeed the ballistic spin-transport properties
of a quasi-one-dimensional wire with a spin-orbit Rashba
interaction in a finite piece of it have been studied with a
numerical tight binding model by Mireles et al. [15] find-
ing a kind of spin current polarization different from that
we have discussed in this paper. In our opinion the is-
sues obtained with a lateral confinement stem from the
transversal localization. The constraint of the electron in
a channel can be achieved through the overlap of states
with kz different from zero. The scattering of these com-

ponents at the interface, as in our case, leads to a different
spin up and spin down transmission.

5 Conclusions

We have presented an detailed analysis of the transmission
through a semiinfinte 2DEG with Rashba spin orbit cou-
pling extending some previous results [17,18]. An electron
in a pure state of spin undergoes a double refraction pass-
ing through the interface analogously to what happens to
the polarized light at the surface of a biaxial crystal. We
have shown that the correct boundary conditions give rise
to a spin-dependent transmission coefficient and that the
normal incidence is a special case for which the depen-
dence on spin is lost. The results for the scattering of an
electron in a pure spin state can be used to investigate
the transmission of an unpolarized statistical mixture of
spin up and spin down. This analysis shows that a partial
spin polarization of an unpolarized incoming beam occurs
when the electron goes through the interface in a direc-
tion out of the normal. The conductance of a point con-
tact at the interface in ballistic transport regime within
the Landauer-Büttiker formalism has been calculated. It
has been shown that the conductance for ingoing electrons
in a pure spin state has an oscillatory behavior with the
polarization angle of the spin. However a partial spin po-
larization remains also for an unpolarized ingoing beam
as the conductances in spin up and spin down channels
show.

We gratefully acknowledge M.Governale for helpful suggestions
about the correct way to impose the boundary conditions at
the interface and for very useful discussions. We thanks A.
Varlamov for a critical reading of the manuscript and for very
useful suggestions to improve it.

Appendix A: Boundary conditions calculation

The boundary conditions at x = 0 give the following linear
system for the amplitudes

t+ cos
α

2
+ t− sin

β

2
− r+ = cos δ

− t+ sin
α

2
+ t− cos

β

2
− r− = sin δ

k+t+ cosα cos
α

2
+ k−t− cosβ sin

β

2

+ r+ (µk cos γ + k0 + iu) = cos δ (µk cos γ − k0 − iu)

− k+t+ cosα sin
α

2
+ k−t− cosβ cos

β

2

+ r− (µk cos γ − k0 + iu) = sin δ (µk cos γ + k0 − iu)
(A.1)
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whose solution is

r+ = (C+A−− cosα/2 + C−A+− sinβ/2)/D

r− = (C−A++ cosβ/2 + C+A−+ sinα/2)/D

t+ = [(cos δ + r+) cosβ/2

− (sin δ + r−) sinβ/2] / cos
α− β

2

t− = [(sin δ + r−) cosα/2

+ (cos δ + r+) sinα/2] / cos
α− β

2
(A.2)

where

A++ = k+ cosα+ µk cos γ + k0 + iu

A+− = k+ cosα+ µk cos γ − k0 + iu

A−+ = −k− cosβ − µk cos γ − k0 − iu

A−− = k− cosβ + µk cos γ − k0 + iu

C+ = (−k+ cosα+ µk cos γ − k0 − iu) cos δ cos
β

2

− (−k+ cosα+ µk cos γ + k0 − iu) sin δ sin
β

2

C− = − (k− cosβ − µk cos γ + k0 + iu) cos δ sin
α

2

+ (−k− cosβ + µk cos γ + k0 − iu) sin δ cos
α

2

D = A++A−− cos
β

2
cos

α

2
−A+−A−+ sin

β

2
sin

α

2
.

We note that the amplitudes depend on the spin of
the incident wave, represented by the parameter δ, and on
the incident wave vector �k. These parameters are not con-
served but they characterize the asymptotic wave packet
directed towards the surface x = 0 before the time at
which the scattering starts.

Appendix B: On the symmetry of the system

We begin to consider the symmetry transformation K̂1

that inverts both pz and σx and leaves px and σz the
same

K̂1pzK̂
†
1 = −pz ; K̂1σxK̂

†
1 = −σx

we find that [H, K̂1] = 0. As

α (−γ) = −α (γ) , β (−γ) = −β (γ)

and changing the incident spin orientation δ in π−δ, we get

t+ (π − δ,−γ) = −t∗+ (δ, γ)

t− (π − δ,−γ) = t− (δ, γ)

r+ (π − δ,−γ) = −r∗+ (δ, γ)

r− (π − δ,−γ) = r− (δ, γ) .

The total transmission obeys the equation

T (π − δ,−γ) = T (δ, γ) (B.1)

and T is an even function of γ only for spin up (δ = 0)
and spin down (δ = π/2) while T is asymmetrical around
the normal incidence γ = 0 for a generic spin state. We
note that at γ = 0 the “partial” time-reversal K̂1 again
does not say anything about the relationship between
T (δ = 0, γ = 0) and T (δ = π/2, γ = 0).

The Hamiltonian H depends on the electrical field as
a parameter through the constant k0. The inversion of
the electrical field is obtained by changing the sign of k0.
The spectrum of H (k0) can be mapped into the spectrum
of H (−k0) by means of an operator K̂2 that inverts �σ
that is

K̂2�σK̂
†
2 = −�σ.

The operator K̂2 transforms all the spinors into orthog-
onal spin states and interchanges the (+) mode with
the (−) mode. We find

k± (k0) = k∓ (−k0)

α (−k0) = β (k0)

and

t+ (k0, δ) = t− (−k0, δ + π/2)

t− (k0, δ) = −t+ (−k0, δ + π/2)

r+ (k0, δ) = r− (−k0, δ + π/2)

r− (k0, δ) = −r+ (−k0, δ + π/2) .

The total transmission has the form

T =
1
µ
· k0

k
· sinα+ sinβ
sinα− sinβ

· |t+|
2 cosα+ |t−|2 cosβ

cos γ

equivalent to that of equation (18) from it follows that

T (−k0, δ + π/2) = T (k0, δ) . (B.2)

Equation (B.2) sets up a relation between the spin up and
spin down state at any incidence angle when the electrical
field is inverted but again it is not able to give the equality
of T+ (↑) and T− (↓) when γ = 0 at the same value of the
parameter k0.
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